Energy-conserving discontinuous Galerkin methods for the Vlasov–Ampère system
نویسندگان
چکیده
منابع مشابه
Energy-conserving discontinuous Galerkin methods for the Vlasov-Maxwell system
In this paper, we generalize the idea in our previous work for the Vlasov-Ampère (VA) system [8] and develop energy-conserving discontinuous Galerkin (DG) methods for the Vlasov-Maxwell (VM) system. The VM system is a fundamental model in the simulation of collisionless magnetized plasmas. Compared to [8], additional care needs to be taken for both the temporal and spatial discretizations to ac...
متن کاملEnergy-conserving discontinuous Galerkin methods for the Vlasov-Ampère system
In this paper, we propose energy-conserving numerical schemes for the VlasovAmpère (VA) systems. The VA system is a model used to describe the evolution of probability density function of charged particles under self consistent electric field in plasmas. It conserves many physical quantities, including the total energy which is comprised of the kinetic and electric energy. Unlike the total part...
متن کاملEnergy conserving local discontinuous Galerkin methods for wave propagation problems
Abstract Wave propagation problems arise in a wide range of applications. The energy conserving property is one of the guiding principles for numerical algorithms, in order to minimize the phase or shape errors after long time integration. In this paper, we develop and analyze a local discontinuous Galerkin (LDG) method for solving the wave equation. We prove optimal error estimates, superconve...
متن کاملEnergy conserving discontinuous Galerkin spectral element method for the Vlasov-Poisson system
We propose a new, energy conserving, spectral element, discontinuous Galerkin method for the approximation of the Vlasov–Poisson system in arbitrary dimension, using Cartesian grids. The method is derived from the one proposed in [ACS12], with two modifications: energy conservation is obtained by a suitable projection operator acting on the solution of the Poisson problem, rather than by solvin...
متن کاملOptimal energy conserving local discontinuous Galerkin methods for second-order wave equation in heterogeneous media
Solving wave propagation problems within heterogeneous media has been of great interest and has a wide range of applications in physics and engineering. The design of numerical methods for such general wave propagation problems is challenging because the energy conserving property has to be incorporated in the numerical algorithms in order to minimize the phase or shape errors after long time i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computational Physics
سال: 2014
ISSN: 0021-9991
DOI: 10.1016/j.jcp.2013.09.013